Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.090
Filtrar
1.
J Lipid Res ; 65(1): 100482, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38052254

RESUMO

Excess cholesterol originating from nonhepatic tissues is transported within HDL particles to the liver for metabolism and excretion. Cholesterol efflux is initiated by lipid-free or lipid-poor apolipoprotein A1 interacting with the transmembrane protein ABCA1, a key player in cholesterol homeostasis. Defective ABCA1 results in reduced serum levels of HDL cholesterol, deposition of cholesterol in arteries, and an increased risk of early onset CVD. Over 300 genetic variants in ABCA1 have been reported, many of which are associated with reduced HDL cholesterol levels. Only a few of these have been functionally characterized. In this study, we have analyzed 51 previously unclassified missense variants affecting the extracellular domains of ABCA1 using a sensitive, easy, and low-cost fluorescence-based assay. Among these, only 12 variants showed a distinct loss-of-function phenotype, asserting their direct association with severe HDL disorders. These findings emphasize the crucial role of functional characterization of genetic variants in pathogenicity assessment and precision medicine. The functional rescue of ABCA1 loss-of-function variants through proteasomal inhibition or by the use of the chemical chaperone 4-phenylbutyric acid was genotype specific. Genotype-specific responses were also observed for the ability of apolipoprotein A1 to stabilize the different ABCA1 variants. In view of personalized medicine, this could potentially form the basis for novel therapeutic strategies.


Assuntos
Apolipoproteína A-I , Colesterol , HDL-Colesterol , Apolipoproteína A-I/genética , Apolipoproteína A-I/metabolismo , Fluorescência , Transportador 1 de Cassete de Ligação de ATP/genética , Colesterol/metabolismo , Mutação de Sentido Incorreto
2.
Circulation ; 149(10): 774-787, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38018436

RESUMO

BACKGROUND: Cholesterol efflux capacity (CEC) predicts cardiovascular disease independently of high-density lipoprotein (HDL) cholesterol levels. Isolated small HDL particles are potent promoters of macrophage CEC by the ABCA1 (ATP-binding cassette transporter A1) pathway, but the underlying mechanisms are unclear. METHODS: We used model system studies of reconstituted HDL and plasma from control and lecithin-cholesterol acyltransferase (LCAT)-deficient subjects to investigate the relationships among the sizes of HDL particles, the structure of APOA1 (apolipoprotein A1) in the different particles, and the CECs of plasma and isolated HDLs. RESULTS: We quantified macrophage and ABCA1 CEC of 4 distinct sizes of reconstituted HDL. CEC increased as particle size decreased. Tandem mass spectrometric analysis of chemically cross-linked peptides and molecular dynamics simulations of APOA1, the major protein of HDL, indicated that the mobility of C-terminus of that protein was markedly higher and flipped off the surface in the smallest particles. To explore the physiological relevance of the model system studies, we isolated HDL from LCAT-deficient subjects, whose small HDLs (like reconstituted HDLs) are discoidal and composed of APOA1, cholesterol, and phospholipid. Despite their very low plasma levels of HDL particles, these subjects had normal CEC. In both the LCAT-deficient subjects and control subjects, the CEC of isolated extra-small HDL (a mixture of extra-small and small HDL by calibrated ion mobility analysis) was 3- to 5-fold greater than that of the larger sizes of isolated HDL. Incubating LCAT-deficient plasma and control plasma with human LCAT converted extra-small and small HDL particles into larger particles, and it markedly inhibited CEC. CONCLUSIONS: We present a mechanism for the enhanced CEC of small HDLs. In smaller particles, the C-termini of the 2 antiparallel molecules of APOA1 are "flipped" off the lipid surface of HDL. This extended conformation allows them to engage with ABCA1. In contrast, the C-termini of larger HDLs are unable to interact productively with ABCA1 because they form a helical bundle that strongly adheres to the lipid on the particle. Enhanced CEC, as seen with the smaller particles, predicts decreased cardiovascular disease risk. Thus, extra-small and small HDLs may be key mediators and indicators of the cardioprotective effects of HDL.


Assuntos
Apolipoproteína A-I , Doenças Cardiovasculares , Humanos , Apolipoproteína A-I/metabolismo , Doenças Cardiovasculares/metabolismo , Lipoproteínas HDL/metabolismo , Colesterol , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Macrófagos/metabolismo , HDL-Colesterol
3.
J Invest Dermatol ; 144(3): 645-658.e7, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37832842

RESUMO

Infantile hemangioma (IH) is the most frequent vascular tumor of infancy with unclear pathogenesis; disordered angiogenesis is considered to be involved in its formation. Apolipoprotein A-I binding protein (AIBP)-also known as NAXE (NAD [P]HX epimerase)-a regulator of cholesterol metabolism, plays a critical role in the pathological angiogenesis of mammals. In this study, we found that AIBP had much lower expression levels in both tissues from patients with IH and hemangioma endothelial cells (HemECs) than in adjacent normal tissues and human dermal vascular endothelial cells, respectively. Knockout of NAXE by CRISPR-Cas9 in HemECs enhanced tube formation and migration, and NAXE overexpression impaired tube formation and migration of HemECs. Interestingly, AIBP suppressed the proliferation of HemECs in hypoxia. We then found that reduced expression of AIBP correlated with increased hypoxia-inducible factor 1α levels in tissues from patients with IH and HemECs. Further mechanistic investigation demonstrated that AIBP disrupted hypoxia-inducible factor 1α signaling through cholesterol metabolism under hypoxia. Notably, AIBP significantly inhibited the development of IH in immunodeficient mice. Furthermore, using the validated mouse endothelial cell (ie, EOMA cells) and Naxe-/- mouse models, we demonstrated that both endogenous AIBP from tumors and AIBP in the tumor microenvironment limit the formation of hemangioma. These findings suggested that AIBP was a player in the pathogenesis of IH and could be a potential pharmacological target for treating IH.


Assuntos
Células Endoteliais , Hemangioma , Humanos , Animais , Camundongos , Células Endoteliais/metabolismo , Apolipoproteína A-I/metabolismo , Camundongos Knockout , Hemangioma/genética , Colesterol/metabolismo , Racemases e Epimerases/metabolismo , Hipóxia/metabolismo , Mamíferos , Microambiente Tumoral
4.
Arterioscler Thromb Vasc Biol ; 44(2): e20-e38, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38095105

RESUMO

BACKGROUND: High cholesterol levels in pancreatic ß-cells cause oxidative stress and decrease insulin secretion. ß-cells can internalize apo (apolipoprotein) A-I, which increases insulin secretion. This study asks whether internalization of apoA-I improves ß-cell insulin secretion by reducing oxidative stress. METHODS: Ins-1E cells were cholesterol-loaded by incubation with cholesterol-methyl-ß-cyclodextrin. Insulin secretion in the presence of 2.8 or 25 mmol/L glucose was quantified by radioimmunoassay. Internalization of fluorescently labeled apoA-I by ß-cells was monitored by flow cytometry. The effects of apoA-I internalization on ß-cell gene expression were evaluated by RNA sequencing. ApoA-I-binding partners on the ß-cell surface were identified by mass spectrometry. Mitochondrial oxidative stress was quantified in ß-cells and isolated islets with MitoSOX and confocal microscopy. RESULTS: An F1-ATPase ß-subunit on the ß-cell surface was identified as the main apoA-I-binding partner. ß-cell internalization of apoA-I was time-, concentration-, temperature-, cholesterol-, and F1-ATPase ß-subunit-dependent. ß-cells with internalized apoA-I (apoA-I+ cells) had higher cholesterol and cell surface F1-ATPase ß-subunit levels than ß-cells without internalized apoA-I (apoA-I- cells). The internalized apoA-I colocalized with mitochondria and was associated with reduced oxidative stress and increased insulin secretion. The IF1 (ATPase inhibitory factor 1) attenuated apoA-I internalization and increased oxidative stress in Ins-1E ß-cells and isolated mouse islets. Differentially expressed genes in apoA-I+ and apoA-I- Ins-1E cells were related to protein synthesis, the unfolded protein response, insulin secretion, and mitochondrial function. CONCLUSIONS: These results establish that ß-cells are functionally heterogeneous, and apoA-I restores insulin secretion in ß-cells with elevated cholesterol levels by improving mitochondrial redox balance.


Assuntos
Células Secretoras de Insulina , Insulina , Camundongos , Animais , Insulina/farmacologia , Apolipoproteína A-I/metabolismo , Células Secretoras de Insulina/metabolismo , Colesterol/metabolismo , Glucose/metabolismo , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/farmacologia
5.
Antivir Ther ; 28(6): 13596535231219639, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38037795

RESUMO

BACKGROUND: Previously, we have demonstrated that Apolipoprotein A-I (ApoA-I) could inhibit the secretion of Hepatitis B virus (HBV), suggesting that stimulation of ApoA-I may block particle production. In the present study, we evaluated the anti-HBV effect of RVX-208, a small-molecule stimulator of ApoA-I gene expression. METHODS: RVX-208 was used to treat HepG2.2.15 cell, a HepG2 derived cell line stably producing HBV virus. Real-time PCR was performed to examine the HBV DNA levels. Magnetic particles, which were coated with anti-HBS or anti-HBE antibody, were used to examine the HBsAg and HBeAg levels in the supernatant of cultured HepG2.2.15 cells in combination with the enzyme conjugates that were prepared with horseradish peroxidase labelled anti-HBS or anti-HBE antibody in a double antibody sandwich manner. RNA-seq, immunoblots and real-time PCR were used to analyze the functional mechanism of RVX-208. RESULTS: RVX-208 could elevate the ApoA-I protein levels in HepG2.2.15 cells. In the meantime, RVX-208 significantly repressed HBV DNA, HBsAg and HBeAg levels in the supernatants of HepG2.2.15 cells. RNA-seq data revealed that RVX-208 treatment not only affected the cholesterol metabolism, which is closely related to ApoA-I, but also regulated signalling pathways that are associated with antiviral immune response. Moreover, mechanistic studies demonstrated that RVX-208 could activate cGAS-STING pathway and upregulate the transcription of a series of interferons, pro-inflammatory cytokines and chemokines with antiviral potential that are at the downstream of cGAS-STING pathway. CONCLUSION: Our study demonstrated that RVX-208, an inducer of ApoA-I, could suppress HBV particle production through activation of cGAS-STING pathway.


Assuntos
Apolipoproteína A-I , Vírus da Hepatite B , Humanos , Apolipoproteína A-I/genética , Apolipoproteína A-I/metabolismo , Antígenos de Superfície da Hepatite B , DNA Viral , Antígenos E da Hepatite B , Células Hep G2 , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/farmacologia
6.
Cell Stem Cell ; 30(6): 800-817.e9, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37267915

RESUMO

Cholesterol efflux pathways could be exploited in tumor biology to unravel cancer vulnerabilities. A mouse model of lung-tumor-bearing KRASG12D mutation with specific disruption of cholesterol efflux pathways in epithelial progenitor cells promoted tumor growth. Defective cholesterol efflux in epithelial progenitor cells governed their transcriptional landscape to support their expansion and create a pro-tolerogenic tumor microenvironment (TME). Overexpression of the apolipoprotein A-I, to raise HDL levels, protected these mice from tumor development and dire pathologic consequences. Mechanistically, HDL blunted a positive feedback loop between growth factor signaling pathways and cholesterol efflux pathways that cancer cells hijack to expand. Cholesterol removal therapy with cyclodextrin reduced tumor burden in progressing tumor by suppressing the proliferation and expansion of epithelial progenitor cells of tumor origin. Local and systemic perturbations of cholesterol efflux pathways were confirmed in human lung adenocarcinoma (LUAD). Our results position cholesterol removal therapy as a putative metabolic target in lung cancer progenitor cells.


Assuntos
Neoplasias Pulmonares , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Camundongos , Animais , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Colesterol/metabolismo , Neoplasias Pulmonares/genética , Proliferação de Células , Pulmão , Células-Tronco/metabolismo , Apolipoproteína A-I/metabolismo , Microambiente Tumoral
7.
Int J Mol Sci ; 24(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37108210

RESUMO

Inflammation and atherosclerosis are intimately associated via the production of dysfunctional high-density lipoproteins (HDL) and modification of apolipoprotein (apo) A-I. A putative interaction between CIGB-258 and apoA-I was investigated to provide mechanistic insight into the protection of HDL. The protective activity of CIGB-258 was tested in the CML-mediated glycation of apoA-I. The in vivo anti-inflammatory efficacy was compared in paralyzed hyperlipidemic zebrafish and its embryo in the presence of CML. Treatment of CML induced greater glycation extent of HDL/apoA-I and proteolytic degradation of apoA-I. In the presence of CML, however, co-treatment of CIGB-258 inhibited the glycation of apoA-I and protected the degradation of apoA-I, exerting enhanced ferric ion reduction ability. Microinjection of CML (500 ng) into zebrafish embryos resulted in acute death with the lowest survivability with severe developmental defects with interleukin (IL)-6 production. Conversely, a co-injection of CIGB-258 or Tocilizumab produced the highest survivability with a normal development speed and morphology. In hyperlipidemic zebrafish, intraperitoneal injection of CML (500 µg) caused the complete loss of swimming ability and severe acute death with only 13% survivability 3 h post-injection. A co-injection of the CIGB-258 resulted in a 2.2-fold faster recovery of swimming ability than CML alone, with higher survivability of approximately 57%. These results suggest that CIGB-258 protected hyperlipidemic zebrafish from the acute neurotoxicity of CML. Histological analysis showed that the CIGB-258 group had 37% lower infiltration of neutrophils in hepatic tissue and 70% lower fatty liver changes than those of the CML-alone group. The CIGB-258 group exhibited the smallest IL-6 expression in the liver and the lowest blood triglyceride level. CIGB-258 displayed potent anti-inflammatory activity in hyperlipidemic zebrafish by inhibiting apoA-I glycation, promoting rapid recovery from the paralysis of CML toxicity and suppression of IL-6, and lowering fatty liver changes.


Assuntos
Fígado Gorduroso , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Apolipoproteína A-I/metabolismo , Interleucina-6 , Lipoproteínas HDL/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
8.
J Biomol Struct Dyn ; 41(24): 15661-15681, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36943736

RESUMO

Apolipoprotein A1 (ApoA1), is the important component of high-density lipoproteins (HDL), that has key role in HDL biogenesis, cholesterol trafficking, and reverse cholesterol transport (RCT). Non-synonymous Single Nucleotide Polymorphisms (nsSNPs) in ApoA1 have been linked to cardiovascular diseases and amyloidosis as they alter the protein's native structure and function. Therefore in this study, we attempted to understand the molecular pathogenicity profile of nsSNPs of ApoA1 using various computational approaches. We used state-of-the-art computational methods to thoroughly investigate the 295 ApoA1 nsSNPs at sequence and structural levels. Seven nsSNPs (L13R, L84R, L84P, L99P, R173P, L187P, and L238P) out of 295 were classified as the most deleterious and destabilizing. In order to estimate the effect of such destabilizing mutations on the protein conformation, all-atom molecular dynamics simulations (MDS) of ApoA1 wild-type (WT), L99P and R173P for 100 ns, was carried out using GROMACS 5.0.1 package. The MD simulation investigation revealed significant structural alterations in L99P and R173P. In addition, they had changed principal component analysis and electrostatic surface potential, decreased structural compactness, and intramolecular hydrogen bonds, which supported the rationale underpinning ApoA1 dysfunction with such mutations. This work sheds light on ApoA1 dysfunction due to single amino acid alterations, and offers new insight into the molecular basis of ApoA1-related diseases progression.Communicated by Ramaswamy H. Sarma.


Assuntos
Apolipoproteína A-I , Simulação de Dinâmica Molecular , Apolipoproteína A-I/genética , Apolipoproteína A-I/química , Apolipoproteína A-I/metabolismo , Lipoproteínas HDL/genética , Lipoproteínas HDL/metabolismo , Colesterol , Mutação
9.
J Mol Biol ; 435(8): 168038, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36889459

RESUMO

The human ATP-binding cassette (ABC) transporter ABCA1 plays a critical role in lipid homeostasis as it extracts sterols and phospholipids from the plasma membrane for excretion to the extracellular apolipoprotein A-I and subsequent formation of high-density lipoprotein (HDL) particles. Deleterious mutations of ABCA1 lead to sterol accumulation and are associated with atherosclerosis, poor cardiovascular outcomes, cancer, and Alzheimer's disease. The mechanism by which ABCA1 drives lipid movement is poorly understood, and a unified platform to produce active ABCA1 protein for both functional and structural studies has been missing. In this work, we established a stable expression system for both a human cell-based sterol export assay and protein purification for in vitro biochemical and structural studies. ABCA1 produced in this system was active in sterol export and displayed enhanced ATPase activity after reconstitution into a lipid bilayer. Our single-particle cryo-EM study of ABCA1 in nanodiscs showed protein induced membrane curvature, revealed multiple distinct conformations, and generated a structure of nanodisc-embedded ABCA1 at 4.0-Å resolution representing a previously unknown conformation. Comparison of different ABCA1 structures and molecular dynamics simulations demonstrates both concerted domain movements and conformational variations within each domain. Taken together, our platform for producing and characterizing ABCA1 in a lipid membrane enabled us to gain important mechanistic and structural insights and paves the way for investigating modulators that target the functions of ABCA1.


Assuntos
Transportador 1 de Cassete de Ligação de ATP , Membrana Celular , Lipídeos de Membrana , Imagem Individual de Molécula , Esteróis , Humanos , Apolipoproteína A-I/metabolismo , Transportador 1 de Cassete de Ligação de ATP/química , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Membrana Celular/química , Fosfolipídeos/química , Esteróis/química , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Mutação , Bicamadas Lipídicas/química , Imagem Individual de Molécula/métodos
10.
Glycobiology ; 33(6): 442-453, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-36762911

RESUMO

Hyperglycemia is a poorly controlled diabetic condition, affects about 70% of people all round the world. In the year 2015, about 41.5 crore people were diabetic and is expected to reach around 64.3 crore by the year 2040. Cardiovascular diseases (CVDs) are considered as one of the major risk factors that cause more than half of the death of diabetic patients and promote related comorbidities. Atherosclerosis and amyloidosis are the prime factors linked with CVDs. Apolipoprotein A-I (ApoA-I) of HDL has protective action against CVDs, participates in reverse cholesterol transport mechanism and lipid metabolism, but gets easily glycated under prolonged hyperglycemic aura, i.e. glycation. ApoA-I has a potent role in maintenance of glucose level, providing a compelling link between diabetes and CVDs. Increased protein glycation in people with diabetes promotes atherosclerosis, which might play possible role in promotion of protein aggregation by altering the protein structure and its conformation. Here, we intend to investigate the mechanistic behavior of ApoA-I under the menace of glycation and its impact on ApoA-I structure and function that possibly link with aggregation or amyloidosis.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Hiperglicemia , Humanos , Lipoproteínas HDL/metabolismo , Apolipoproteína A-I/química , Apolipoproteína A-I/metabolismo , Reação de Maillard , Aterosclerose/metabolismo
11.
Appl Biochem Biotechnol ; 195(7): 4653-4672, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36689166

RESUMO

For several strategies formulated to prevent atherosclerosis, Apolipoprotein A1 Milano (ApoA1M) remains a prime target. ApoA1M has been reported to have greater efficiency in reducing the incidence of coronary artery diseases. Furthermore, recombinant ApoA1M based mimetic peptide exhibits comparatively greater atheroprotective potential, offers a hope in reducing the burden of atherosclerosis in in vivo model system. The aim of this review is to emphasize on some of the observed ApoA1M structural and functional effects that are clinically and therapeutically meaningful that might converge on the basic role of ApoA1M in reducing the chances of glycation assisted ailments in diabetes. We also hypothesize that the nonenzymatic glycation prone arginine amino acid of ApoA1 gets replaced with cysteine residue and the rate of ApoA1 glycation may decrease due to change substitution of amino acid. Therefore, to circumvent the effect of ApoA1M glycation, the related mechanism should be explored at the cellular and functional levels, especially in respective experimental disease model in vivo.


Assuntos
Aterosclerose , Doença da Artéria Coronariana , Humanos , Apolipoproteína A-I/metabolismo
12.
Curr Mol Med ; 23(8): 762-773, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35670343

RESUMO

BACKGROUND: According to the reports, the most vital characteristic of obesity is an aberrant accumulation of triglycerides (TG) in the adipocyte. On the other hand, circulating concentrations of apolipoprotein A1 (apoA1) have been demonstrated to be strongly correlated with the prevalence and the pathological development of obesity. Nevertheless, the underlying mechanisms whereby apoA1 modulates the pathogenesis of obesity is still not fully elucidated. METHODS: Adipose-derived mesenchymal stem cells (AMSCs, isolated from the hospitalized patients were combined with 15 µg/ml recombined human apoA1 protein. The effects of apoA1 on modulating the intracellular levels of TG and the expression contents of adipogenic related cytokines were also analyzed. Furthermore, whether apoA1 modulated the adipogenesis progression via sortilin was also explored in the current research. RESULTS: During the adipogenesis progression, apoA1 could significantly lower the quantity of intracellular lipid droplets (LDs). Meanwhile, apoA1 could decrease the intracellular levels of TG and down-regulate the expression contents of several vital adipogenic related cytokines, such as CCAAT enhancer-binding proteins α/ß (C/EBPα/ß), fatty acid synthetase (FAS), and fatty acid-binding protein 4 (FABP4). Moreover, the inhibitory effect of apoA1 was further verified to be induced through upregulating the SORT1 gene expression which subsequently increased sortilin protein. Consistent with these findings, silencing the SORT1 gene expression could induce the loss-of-function (LOF) of apoA1 in modulating the adipogenesis progression of AMSCs. CONCLUSION: In conclusion, apoA1 could suppress the adipogenesis progression of human AMSCs through, at least partly, up-regulating the SORT1 gene expression which subsequently increases the sortilin protein content. Thereby, the present research sheds light on a novel pathogenic mechanism by which apoA1 regulates adipogenesis progression and proposes that apoA1 embraces the function to treat obesity in clinical practice.


Assuntos
Adipogenia , Células-Tronco Mesenquimais , Humanos , Adipogenia/genética , Tecido Adiposo/metabolismo , Diferenciação Celular/genética , Apolipoproteína A-I/genética , Apolipoproteína A-I/metabolismo , Apolipoproteína A-I/farmacologia , Células-Tronco Mesenquimais/metabolismo , Citocinas/metabolismo , Obesidade/genética , Obesidade/metabolismo
13.
Protoplasma ; 260(2): 651-662, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35962262

RESUMO

Identification of molecular regulators of hepatocellular carcinoma (HCC) initiation and progression is not well understood. We chemically induced HCC in male Wistar rats by administration of diethyl nitrosamine (DEN) and 2-acetylaminofluorene (2-AFF). Using 2D-electrophoresis and MALDI-TOF-MS/MS analyses, we characterized differentially expressed proteins in liver tissues at early stage of HCC progression. Using RT-PCR analysis, we quantified the mRNA expression of the characterized proteins and validated the transcript expression with tumor tissues of clinically confirmed HCC patients. Using bioinformatic tools, we analyzed a network among the introduced proteins that identified their interacting partners and analyzed the molecular mechanisms associated with signaling pathways during HCC progression. We characterized a protein, namely, pre-mRNA splicing factor 1 homolog (ISY1), which is upregulated at both transcriptome and proteome levels at HCC initiation, progression, and tumor stages. We analyzed the interacting partners of ISY1, namely, APOA-1, SYNE1, MMP10, and MTG1. Real-time PCR analysis confirmed elevated expression of APOA-1 mRNA at HCC initiation, progression, and tumor stages in animals undergoing tumorigenesis. The mRNA expression of the interacting partners was validated with tumor tissues of clinically confirmed liver cancer patients; the analysis revealed significant elevation in expression of transcripts. The transcriptome and proteome analyses complement each other and dysregulation in mRNA and protein expression of these regulators may play critical role in HCC initiation and progression.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratos , Animais , Masculino , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Apolipoproteína A-I/efeitos adversos , Apolipoproteína A-I/genética , Apolipoproteína A-I/metabolismo , Metaloproteinase 10 da Matriz/genética , Metabolismo dos Lipídeos , Proteoma/metabolismo , Espectrometria de Massas em Tandem , Ratos Wistar , Receptores ErbB/efeitos adversos , Receptores ErbB/genética , Receptores ErbB/metabolismo , RNA Mensageiro/genética , Regulação Neoplásica da Expressão Gênica , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
14.
Liver Int ; 43(1): 234-248, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36203339

RESUMO

BACKGROUND AND AIMS: Apolipoprotein A-1 (ApoA-1), the major apolipoprotein of high-density lipoprotein, plays anti-atherogenic role in cardiovascular diseases and exerts anti-inflammation effect in various inflammatory and infectious diseases. However, the role and mechanism of ApoA-1 in hepatic ischaemia-reperfusion (I/R) injury is unknown. METHODS: In this study, we measured ApoA-1 expression in human liver grafts after transplantation. Mice partial hepatic I/R injury model was made in ApoA-1 knockout mice, ApoA-1 mimetic peptide D-4F treatment mice and corresponding control mice to examine the effect of ApoA-1 on liver damage, inflammation response and cell death. Primary hepatocytes and macrophages were isolated for in vitro study. RESULTS: The results showed that ApoA-1 expression was down-regulated in human liver grafts after transplantation and mice livers subjected to hepatic I/R injury. ApoA-1 deficiency aggravated liver damage and inflammation response induced by hepatic I/R injury. Interestingly, we found that ApoA-1 deficiency increased pyroptosis instead of apoptosis during acute phase of hepatic I/R injury, which mainly occurred in macrophages rather than hepatocytes. The inhibition of pyroptosis compensated for the adverse impact of ApoA-1 deficiency. Furthermore, the up-regulated pyroptosis process was testified to be mediated by ApoA-1 through TLR4-NF-κB pathway and TLR4 inhibition significantly improved hepatic I/R injury. In addition, we confirmed that D-4F ameliorated hepatic I/R injury. CONCLUSIONS: Our study has identified the protective role of ApoA-1 in hepatic I/R injury through inhibiting pyroptosis in macrophages via TLR4-NF-κB pathway. The effect of ApoA-1 may provide a novel therapeutic approach for hepatic I/R injury.


Assuntos
Hepatopatias , Traumatismo por Reperfusão , Humanos , Camundongos , Animais , NF-kappa B/metabolismo , Apolipoproteína A-I/farmacologia , Apolipoproteína A-I/metabolismo , Apolipoproteína A-I/uso terapêutico , Piroptose , Receptor 4 Toll-Like , Transdução de Sinais , Fígado/metabolismo , Hepatopatias/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo , Macrófagos/metabolismo
15.
Am J Physiol Cell Physiol ; 324(2): C438-C446, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36534503

RESUMO

Apolipoprotein A-I (apoA-I) mediates reverse cholesterol transport (RCT) out of cells. In addition to its important role in the RTC, apoA-I also possesses anti-inflammatory and antioxidative functions including the ability to activate inflammasome and signal via toll-like receptors. Dysfunctional apoA-I or its low abundance may cause accumulation of cholesterol mass in alveolar macrophages, leading to the formation of foam cells. Increased numbers of foam cells have been noted in the lungs of mice after experimental exposure to cigarette smoke, silica, or bleomycin and in the lungs of patients suffering from different types of lung fibrosis, including idiopathic pulmonary fibrosis (IPF). This suggests that dysregulation of lipid metabolism may be a common event in the pathogenesis of interstitial lung diseases. Recognition of the emerging role of cholesterol in the regulation of lung inflammation and remodeling provides a challenging concept for understanding lung diseases and offers novel and exciting avenues for therapeutic development. Accordingly, a number of preclinical studies demonstrated decreased expression of inflammatory and profibrotic mediators and preserved lung tissue structure following the administration of the apoA-I or its mimetic peptides. This review highlights the role of apoA-I in lung fibrosis and provides evidence for its potential use in the treatment of this pathological condition.


Assuntos
Apolipoproteína A-I , Fibrose Pulmonar Idiopática , Animais , Camundongos , Apolipoproteína A-I/metabolismo , Apolipoproteína A-I/uso terapêutico , Aterosclerose/metabolismo , Colesterol/metabolismo , Células Espumosas/metabolismo , Células Espumosas/patologia , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo
16.
Arterioscler Thromb Vasc Biol ; 43(1): e46-e61, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36384268

RESUMO

BACKGROUND: Diabetes is a major risk factor for peripheral arterial disease. Clinical and preclinical studies suggest an impaired collateral remodeling and angiogenesis in response to atherosclerotic arterial occlusion in diabetic conditions, although the underlying mechanisms are poorly understood. OBJECTIVE: To clarify the cellular and molecular mechanisms underlying impaired postischemic adaptive vascular responses and to evaluate rHDL (reconstituted HDL)-ApoA-I nanotherapy to rescue the defect in type 2 diabetic mouse model of hindlimb ischemia. METHODS AND RESULTS: Hindlimb ischemia was induced by unilateral femoral artery ligation. Collateral and capillary parameters together with blood flow recovery were analyzed from normoxic adductor and ischemic gastrocnemius muscles, respectively, at day 3 and 7 post-ligation. In response to femoral artery ligation, collateral lumen area was significantly reduced in normoxic adductor muscles. Distally, ischemic gastrocnemius muscles displayed impaired perfusion recovery and angiogenesis paralleled with persistent inflammation. Muscle-specific mRNA sequencing revealed differential expression of genes critical for smooth muscle proliferation and sprouting angiogenesis in normoxic adductor and ischemic gastrocnemius, respectively, at day 7 post-ligation. Genes typical for macrophage (Mϕ) subsets were differentially expressed across both muscle types. Cell-specific gene expression, flow cytometry, and immunohistochemistry revealed persistent IFN-I response gene upregulation in arterial endothelial cells, ECs and Mϕs from T2DM mice associated with impaired collateral remodeling, angiogenesis and perfusion recovery. Furthermore, rHDL nanotherapy rescued impaired collateral remodeling and angiogenesis through dampening EC and Mϕ inflammation in T2DM mice. CONCLUSIONS: Our results suggest that an impaired collateral remodeling and sprouting angiogenesis in T2DM mice is associated with persistent IFN-I response in ECs and Mϕs. Dampening persistent inflammation and skewing ECs and Mϕ phenotype toward less inflammatory ones using rHDL nanotherapy may serve as a potential therapeutic target for T2DM peripheral arterial disease.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Doença Arterial Periférica , Camundongos , Animais , Neovascularização Fisiológica , Células Endoteliais/metabolismo , Apolipoproteína A-I/metabolismo , Macrófagos/metabolismo , Isquemia , Músculo Esquelético/irrigação sanguínea , Artéria Femoral/metabolismo , Diabetes Mellitus Tipo 2/genética , Inflamação/metabolismo , Doença Arterial Periférica/metabolismo , Fenótipo , Membro Posterior/irrigação sanguínea , Camundongos Endogâmicos C57BL , Circulação Colateral
17.
Arterioscler Thromb Vasc Biol ; 43(1): 45-63, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36353992

RESUMO

BACKGROUND: Atherosclerosis is a chronic disease affecting artery wall and a major contributor to cardiovascular diseases. Large necrotic cores increase risk of plaque rupture leading to thrombus formation. Necrotic cores are rich in debris from dead macrophages. Programmed necrosis (necroptosis) contributes to necrotic core formation. HDL (high-density lipoprotein) exerts direct atheroprotective effects on different cells within atherosclerotic plaques. Some of these depend on the SR-B1 (scavenger receptor class B type I) and the adapter protein PDZK1 (postsynaptic density protein/Drosophila disc-large protein/Zonula occludens protein containing 1). However, a role for HDL in protecting against necroptosis and necrotic core formation in atherosclerosis is not completely understood. METHODS: Low-density lipoprotein receptor-deficient mice engineered to express different amounts of ApoA1 (apolipoprotein A1), or to lack PDZK1 were fed a high fat diet for 10 weeks. Atherosclerotic plaque areas, necrotic cores, and key necroptosis mediators, RIPK3 (receptor interacting protein kinase 3), and MLKL (mixed lineage kinase domain-like protein) were characterized. Cultured macrophages were treated with HDL to determine its effects, as well as the roles of SR-B1, PDZK1, and the PI3K (phosphoinositide 3-kinase) signaling pathway on necroptotic cell death. RESULTS: Genetic overexpression reduced, and ApoA1 knockout increased necrotic core formation and RIPK3 and MLKL within atherosclerotic plaques. Macrophages were protected against necroptosis by HDL and this protection required SR-B1, PDZK1, and PI3K/Akt pathway. PDZK1 knockout increased atherosclerosis in LDLRKO mice, increasing necrotic cores and phospho-MLKL; both of which were reversed by restoring PDZK1 in BM-derived cells. CONCLUSIONS: Our findings demonstrate that HDL in vitro and ApoA1, in vivo, protect against necroptosis in macrophages and necrotic core formation in atherosclerosis, suggesting a pathway that could be a target for the treatment of atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Camundongos , Placa Aterosclerótica/metabolismo , Lipoproteínas HDL/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Apolipoproteína A-I/genética , Apolipoproteína A-I/metabolismo , Necroptose , Necrose/metabolismo , Macrófagos/metabolismo , Aterosclerose/genética , Aterosclerose/prevenção & controle , Aterosclerose/metabolismo , Camundongos Knockout , Camundongos Endogâmicos C57BL
18.
Int J Mol Sci ; 23(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36498935

RESUMO

Hyperlipidemia-associated lipid disorders are considered the cause of atherosclerotic cardiovascular disease. Reverse cholesterol transport (RCT) is a mechanism by which excess peripheral cholesterol is transported to the liver and further converted into bile acid for excretion from the body in feces, which contributes to reducing hyperlipidemia as well as cardiovascular disease. We previously found that the recombinant humanized IgG1 antibody promotes macrophages to engulf lipids and increases cholesterol efflux to high-density lipoprotein (HDL) through ATP-binding cassette sub-family A1 (ABCA1), one of the key proteins related to RCT. In the present study, we explored other RCT related proteins expression on hepatocytes, including scavenger receptor class B type I (SR-BI), apolipoprotein A-I (ApoA-I), and apolipoprotein A-II (ApoA-II), and its modulation mechanism involved. We confirmed that the recombinant humanized IgG1 antibody selectively activated ERK1/2 to upregulate SR-BI, ApoA-I, and ApoA-II expression in mice liver and human hepatocellular carcinoma cell lines HepG2 cells. The rate-limiting enzymes of bile acid synthesis, including cholesterol 7α-hydroxylase (CYP7A1) and sterol 27-hydroxylase (CYP27A1), exhibited a significant increase when treated with the recombinant humanized IgG1 antibody, as well as increased excretion of bile acids in feces. Besides, abolishment or mutation of peroxisome proliferator-activated receptor α (PPARα)/RXR binding site on SR-BI promoter eliminated SR-BI reporter gene luciferase activity even in the presence of the recombinant humanized IgG1 antibody. Knock down the neonatal Fc receptor (FcRn) on hepatocytes impaired the effect of recombinant humanized IgG1 antibody on activation of ERK1/2, as well as upregulation of SR-BI, ApoA-I, and ApoA-II expression. In conclusion, one of the mechanisms on the recombinant humanized IgG1 antibody attenuates hyperlipidemia in ApoE-/- mice model fed with high-fat-diet might be through reinforcement of liver RCT function in an FcRn-ERK1/2-PPARα dependent manner.


Assuntos
Doenças Cardiovasculares , PPAR alfa , Camundongos , Animais , Humanos , PPAR alfa/genética , PPAR alfa/metabolismo , Receptores Depuradores Classe B/genética , Receptores Depuradores Classe B/metabolismo , Apolipoproteína A-II/metabolismo , Imunoglobulina G/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Apolipoproteína A-I/metabolismo , Transporte Biológico , Colesterol/metabolismo , Hepatócitos/metabolismo , Ácidos e Sais Biliares
19.
Genes (Basel) ; 13(11)2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36360205

RESUMO

Oxidative stress has been implicated in the initiation of acute pancreatitis (AP). HDL is considered to be a preventing factor against cell membrane oxidation, thanks to the presence on its surface of apolipoprotein A-I (apoA-I) and paraoxonase-1 (PON1), which activity can be modified by genetic and environmental factors. The impact of SNP rs662 in the PON1 gene and SNP rs670 and rs5069 in the APOAI gene on PON1 activities and its concentration in the population of AP patients and healthy volunteers was investigated. In the group of patients with AP, a decreased HDL concentration and PON1 activities were observed. A decrease in the aryloesterase and lactonase activities of PON1 in AP patients with the TT genotype for SNP rs662 (especially in smokers) was found. In the group of patients with the AA genotype (rs670), the highest concentrations of HDL and apoA-I were observed, which were gradually decreasing in the course of AP. Changes in the concentration of apoA-I were associated with the changes in the concentration and activities of PON1 in the AP patients with the AA genotype for SNP rs670. A decreasing apoA-I concentration contributing to lowering PON1 concentration and its activities during the hospitalization of AP patients with the CC genotype for SNP rs5069 were shown. Therefore, more susceptibility of persons with the CC genotype for SNP rs5069 to pro/antioxidative imbalance was shown. In this process, an important role was played by the HDL level and its interaction with PON1 and apoA-I.


Assuntos
Arildialquilfosfatase , Pancreatite , Humanos , Arildialquilfosfatase/genética , Apolipoproteína A-I/genética , Apolipoproteína A-I/metabolismo , Voluntários Saudáveis , Doença Aguda , Pancreatite/genética
20.
Cell Rep ; 41(6): 111591, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36351388

RESUMO

The progressive nature of demyelinating diseases lies in the inability of the central nervous system (CNS) to induce proper remyelination. Recently, we and others demonstrated that a dysregulated innate immune response partially underlies failure of CNS remyelination. Extensive accumulation of myelin-derived lipids and an inability to process these lipids was found to induce a disease-promoting phagocyte phenotype. Hence, restoring the ability of these phagocytes to metabolize and efflux myelin-derived lipids represents a promising strategy to promote remyelination. Here, we show that ApoA-I mimetic peptide 5A, a molecule well known to promote activity of the lipid efflux transporter ABCA1, markedly enhances remyelination. Mechanistically, we find that the repair-inducing properties of 5A are attributable to increased clearance and metabolism of remyelination-inhibiting myelin debris via the fatty acid translocase protein CD36, which is transcriptionally controlled by the ABCA1-JAK2-STAT3 signaling pathway. Altogether, our findings indicate that 5A promotes remyelination by stimulating clearance and degradation of myelin debris.


Assuntos
Doenças Desmielinizantes , Remielinização , Humanos , Remielinização/fisiologia , Bainha de Mielina/metabolismo , Doenças Desmielinizantes/metabolismo , Apolipoproteína A-I/metabolismo , Peptídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA